quinta-feira, 11 de dezembro de 2014

Arvores para curarmos


  Abrazar árboles para sanarnos

 Tanto las flores como los árboles tienen una radiación energética compatible con la de las personas. Esto quiere decir que podemos usar esa energía que las plantas nos brindan para energetizar nuestro propio sistema energético, el cual está formado por el campo áurico y los chakras principales y secundarios.

  Nuestros antepasados buscaban un árbol para abrazarse a su tronco, cuando se sentían angustiados o cargados de problemas. Por el tronco fluye la savia que da energía directamente de la tierra.

 En las técnicas orientales, como el chi-kung, hay una postura que se llama "abrazar el árbol". Esta posición estática alinea todos los huesos del modo más eficaz posible.

 Para los occidentales puede parecer algo ridículo, sin embargo, cada vez más naturópatas lo recomiendan.

 Es una forma gratuita de sentirse en comunión con la naturaleza.Cuando caminamos entre los árboles en un parque o un bosque, podemos llegar a sentir la energía que desprenden. Los celtas creían que cada árbol poseía un espíritu sabio y que sus rostros podían verse en la corteza de sus troncos y sus voces escucharse en el sonido de las hojas moviéndose con el viento.

 Los árboles nos ayudan a establecer contacto con el poder de la naturaleza, nos dan herramientas para sanarnos, relajarnos, fortalecernos, cargarnos de energía vital y son portadores de los mensajes de la madre Tierra.

  Existen cada vez más personas que han comprobado los beneficios de abrazar los árboles. Al revés que con las personas que al abrazarlas podemos notar pérdidas de energía debido a factores emocionales, con un árbol siempre notaremos que nos carga, nunca que nos descarga.

 No olvidemos que todo ser vivo es energía, y al igual que nosotros, los árboles tienen la suya propia, muchas veces entramos en sintonía y sentimos como fluye expresando nuestra sensación de bienestar, tranquilidad, serenidad, etc. Desde aquí queremos compartir la energía que te aporta cada árbol en concreto, porque cada uno tiene una característica, determinada por su especie, velocidad de crecimiento, entorno.

 ¿CÓMO CAPTAR LA ENERGÍA DE LOS ÁRBOLES? La energía que emanan los árboles, al igual que la nuestra, es invisible al ojo físico, es lo que llamamos el aura, muy perceptible sensitivamente.

  El árbol al igual que las personas está emitiendo vibraciones energéticas constantemente y son perfectamente asimilables por el ser humano, se pueden absorber y podemos beneficiarnos de sus efectos.

 Existen dos formas fundamentales de captarla:

  A TRAVÉS DE LA ENERGÍA DEL ÁRBOL:

  Su extensión es más o menos grande según las características de cada árbol y su situación ambiental. Bastará penetrar en su radio de acción. Este tipo de energía se absorbe con el simple hecho de pasear por un bosque, conscientemente podemos aumentar su captación regulando nuestra respiración a un ritmo tranquilo y algo profundo.


 En la práctica, esto lo podemos hacer:
Camina entre los árboles y escoge alguno que te llame la atención.
  1. Acércate a él, obsérvalo y capta su energía, no trates de analizarlo mentalmente o de establecer un vínculo emocional. Sólo nota su tono vibratorio.
  2. Tócalo al mismo tiempo que cierras los ojos, con tu mano izquierda. Reconoce su fuerza y su influencia en el entorno. Observa si es un árbol solitario o un pastor de árboles que tiene influencia sobre el colectivo. Capta si su energía es curativa, o si es protectora y amorosa, o si es sabia, o si es imponente en todo ese territorio o de cualquier otro tipo. Acepta esa energía sin más y pregúntate si deseas recargarte a ti mismo con esa fuerza.
  3. Establece contacto con la energía del árbol mediante tu corazón energético. Vacía tu ruido interno, fluye en el amor y escucha al árbol. Capta su espíritu. Preséntate con tu nombre y entra en un espacio donde la comunicación es energética y no sonora. Puedes pedir consejo sobre cualquier situación que necesites, cargarte de energía, relajarte o aceptar su sabiduría.
  4. Escucha la en tu corazón, da las gracias, levántate y despídete poniendo tu mano derecha sobre su tronco.
 EN CONTACTO DIRECTO CON EL ÁRBOL:

 Utilizando las manos:

A través de ellas podemos realizar una captación más consciente, son una zona muy sensible a la emisión y captación vibratoria ya que en la palma existen varios puntos de entrada y salida de energía. La posición más conveniente es la de seguir las grietas o fisuras de la corteza en el sentido que las presenta el árbol.

  Utilizando la espalda:
 La parte central de la espalda, recorriendo la columna vertebral, se encuentra el canal energético principal del cuerpo. Apoyando esta zona en el tronco del árbol absorberemos la energía que emana.

 de García Azañedo.

 DEBO ACLARAR QUE ESTO SOLO RESULTA SI HACEMOS UN INTERCAMBIO AMOROSO, DE AMOR, SI SOLO QUEREMOS APROVECHARNOS DE SU ENERGIA,EN SANARNOS, SI SOLO PENSAMOS EN SU USUFRUCTO, EL CONTACTO NO SE REALIZARA.

 SAIKU.

sexta-feira, 7 de novembro de 2014

Somos Todos UM

http://www.youtube.com/watch?v=QlpB3PKZ9pU&feature=player_embedded


Quando os europeus chegaram aqui...Colombo
Nós podíamos beber água de qualquer rio.
Se os europeus vivessem como os nativos, quando eles vieram
Nós ainda poderíamos beber aquela água
Porque água é sagrada, o ar é sagrado
Nosso DNA é feito do mesmo DNA que a árvore
A árvore inspira o que expiramos
Quando ela expira nós precisamos do que ela expira
Então...nós temos um destino em comum com a árvore
Somos... viemos todos da Terra
E quando a terra, água e atmosfera são corrompidos
Isso irá criar uma certa reação
A MÃE TERRA está reagindo...
o mundo se tornou um "mercado"

É esse "mercado" que temos que resolver
Essa idéia de recursos abundantes e intermináveis
E quando voce diz recursos naturais,
voce está falando de nossos "parentes"... de nossa família...
Não são "recursos naturais"...são família...
E requerem todo nosso respeito...
A estrutura do mundo é assim...
funciona sob leis naturais, que é um processo regenerativo poderoso
um processo que continua, cresce e é interminável...
SE todos concordam com a lei e seguem a lei
mas se voce desafia a lei
e acha que vai mudar a lei...você vai fracassar
E nesse fracasso vai haver muita dor
porque a Lei Natural não tem misericórdia
É apenas "A LEI"...
A Terra é toda poderosa...
Não foi feita para os "seres humanos"
pois somos só parte dela.
Nós não "temos" que estar aqui
porque a Terra tem seu próprio processo
E se chegar ao ponto de vc se destruir como ser humano e vc...
destruir a vida e finalmente deixar esta Terra
a Terra não vai desaparecer...
Não vai ser o fim do mundo
isso nos parece um conceito curioso
não... o mundo não vai acabar
a vida das pessoas vai acabar
Portanto, não é o fim do mundo...É o NOSSO fim.
E o mundo... não importa que destruição você tenha feito nele,
vai se regenerar... vai se tornar verde de novo
vai reconstruir tudo que esteve aqui um dia...
exceto o fato de que não vai mais haver pessoas.
Porque a Terra tem todo o tempo à sua disposição...
À medida que você está se destruindo...
... na reta final,
e você está correndo rumo ao final
e lá existe um muro de pedra...
e você não está freando seu cavalo,
você não está parando, você está, na verdade, acelerando.
Essa é a maneira como eu vejo o uso do que vocês chamam de recursos
Você está usando-os mais rápido do que eles se reproduzem
Vocês estão indo rumo ao desastre, e ninguém está freando o cavalo
E cada dia que você não fizer o que é certo
é mais um dia que você perdeu uma opção
e você perde suas opções a cada dia...
Nenhuma árvore cresce por si mesma
Uma árvore é uma comunidade
certas árvores, certas plantas se reúnem em torno de certas árvores
e certos medicamentos se reúnem em torno de certas plantas
Assim, se você matar todas as árvores, se você cortar todas elas
e você destruir a comunidade, você não está destruindo só uma árvore ...
você está destruindo toda a comunidade
que a rodeia e prospera ali...
e talvez medicamentos importantes para pessoas ou animais
Assim, você perdeu uma comunidade e se cortar tudo,
que é o que acontece na América e no Canadá hoje em dia,
e penso que no mundo todo...
então você é mesmo uma força muito destrutiva.
E apenas replantar árvores não é replantar comunidade
você perdeu muito ... no processo
Se você não entender isso, você entenderá...
E esse entendimento virá...de uma forma bem dura.
Das 100 "unidades econômicas" dominantes no mundo de hoje
as 100 maiores unidades econômicas ...
é a palavra que eles usam...somos "unidades"
49 são países e 51 são corporações ...
Bem, vamos "digerir" isso por um segundo ...
O que significa isso?
isso significa que corporações são a força motriz
de tomada de decisão hoje em dia ...
e as corporações não estão preocupadas com direitos humanos,
não estão preocupadas com a Vida Humana,
não estão preocupadas com salários adequados
para pessoas que trabalham para elas.
Então, que tipo de decisões serão tomadas em nosso favor,
por esse "poder econômico"?
essas "corporações-países", como eu as chamo.
Ah, vai ser um inferno, como se costuma dizer
devido às coisas que estão ocorrendo agora.
Eu penso que as pessoas têm que tomar consciência, acordar...
O poder está sempre nas mãos das pessoas
elas tem que criar uma consciência única, precisam...
contestar os valores que lhes são empurrados hoje
porque estamos virando uma sociedade de consumidores
comandada pela economia, e não pelo bom senso.

Você sabe, não é bom sensoapenas "seguir" alguém, sem motivo...
Por quê?... Vc não tem a resposta...por quê você está seguindo alguém
se ele está pulando de um precipício...
Porque você o seguiria?
você o seguiria?
Pense bem, use seu bom senso...
Todo mundo deveria ser seu próprio líder
Em outras palavras, pensar por conta própria
Quando olhamos a fundo, queremos encontrar aliados, amigos
pessoas que vão compreender
e concordar com as atitudes de paz.
Agora tudo está sendo colocado em nossas mãos, toda a VIDA.
É nossa responsabilidade e dever
tomar conta de todas as formas de VIDA...
Assim, quando se fala disso
nao é sobre nossos tios, tias e primos,
nossos pais e mães, mas sim sobre TODA forma de vida.
Temos que pensar nas árvores, peixes,
todos os animais, tudo aquilo que cresce,
tudo o que tem VIDA,
porque... tudo é uma FAMÍLIA...

Narração: Profecia de nativos norte-americanos: Red Crow Westerman e Oren Lyons.
Imagens: Do premiado documentário "Planet Earth" da série sobre a natureza, de David Attenborough (BBC), produzido por Alastair Fothergill.
Trilha Sonora: do filme Patch Adams. Contém músic

segunda-feira, 20 de outubro de 2014

Turma,
este filme é simplesmente lindo!... 
Apresenta a dedicaçâo maravilhosa de um professor por seus alunos .
A expressão no mais infimo da alma e a sensibildiade a flor da pele.... ..
Enjoy it!!!!!!!
Eliane Sena

https://www.youtube.com/watch?v=b6J0CCuA11w&list=PLbNTJhiOvm7GQfBb6aLHIpsjFmeRjFTp2&index=1



sábado, 18 de outubro de 2014

Fossa de Bananeiras

“Conhecida popularmente por “fossa de bananeiras”, é uma técnica de tratamento de efluentes domésticos desenvolvida pelo Ecocentro IPEC para solucionar o problema da poluição existente em zonas urbanas e periféricas com os efluentes dos sanitários convencionais jogados em ‘sumidouros’. Vale lembrar que, em comunidades com mais de 500 habitantes/km2, a biologia do solo não consegue realizar a eliminação completa de patógenos e, particularmente onde o lençol freático está próximo da superfície, o problema pode chegar a sérios riscos para a saúde pública. Por isso, o canteiro bio-séptico é uma opção segura, barata, bonita e sustentável ao saneamento básico. Como funciona o canteiro bio-séptico?

Ele é facilmente construído com materiais prontamente disponíveis no mercado e de baixo custo. Uma escavação de 1mX1mX4m é feita em nível no terreno e esta vala é repetida paralelamente. Dentro da vala é construída uma câmara para receber os efluentes e a construção é feita com tijolos de 6 furos, tijolos maciços e meias-manilhas de concreto, de forma a receber os efluentes para um tratamento biológico híbrido.

O tratamento híbrido - O efluente é digerido anaerobicamente pelos micro-organismos presentes. A medida em que o nível aumenta, o líquido alcança os furos dos tijolos e sai para uma segunda câmara preenchida com material poroso, como argila expandida, e propicia a digestão aeróbica da matéria orgânica e minerais. Nos quinze centímetros superiores da vala são plantadas bananeiras e outras plantas hidrófilas que fazem a evaporação do líquido remanescente.

Esse sistema já foi instalado em uma variedade de situações, desde residências convencionais até restaurantes e feiras, e os resultados são surpreendentemente positivos: não há efluentes e as plantas produzem alimento de ótima qualidade.”

(Http://www.ecocentro.org/artigo.do?acao=pesquisarArtigo&artigo.id=37453)

 



Figura -  - fossa de Bananeira – fonte: site: http://www.ecocentro.org

 Podemos realizar
 
Tratamento de descarte Orgânico:

Compostagem é o conjunto de técnicas aplicadas para controlar a decomposição de materiais orgânicos, com a finalidade de obter, no menor tempo possível, um material estável, rico em húmus e nutrientes minerais; com atributos físicos, químicos e biológicos superiores (sob o aspecto agronômico) àqueles encontrados na(s) matéria(s) prima(s) (http://pt.wikipedia.org/wiki/Compostagem)

.


                                                Figura – Compostagem – Blog Terra a Vista – R.Bulha – Mar´2010

 
Reciclagem
 
Reciclar é economizar energia, poupar recursos naturais e trazer de volta ao ciclo produtivo o que é jogado fora. A palavra reciclagem foi introduzida ao vocabulário internacional no final da década de 80, quando foi constatado que as fontes de petróleo e outras matérias-primas não renováveis estavam e estão se esgotando. Reciclar significa = Re (repetir) + Cycle (ciclo). A reciclagem traz os seguintes benefícios:

·         Contribui para diminuir a poluição do solo, água e ar;

·         Melhora a limpeza da cidade e a qualidade de vida da população;

·         Prolonga a vida útil de aterros sanitários;

·         Melhora a produção de compostos orgânicos;

·         Gera empregos para a população não qualificada;

·         Gera receita com a comercialização dos recicláveis;

·         Estimula a concorrência, uma vez que produtos gerados a partir dos reciclados são comercializados em paralelo àqueles gerados a partir de matérias-primas virgens; e

·         Contribui para a valorização da limpeza pública e para formar uma consciência ecológica. (http://www.ambientebrasil.com.br)



Figura  - Ciclo infinito da Reciclagem (http://cidadesinstituto.blogspot.com/2008_10_01_archive.html)

 


sexta-feira, 17 de outubro de 2014

Masaro Emoto,

minha pequena homenagem ao Sr. da Aguas que nos deixou esta semana!!!
Aqui segue um vídeo e fotos onde eu e meu amigo José Vitor tivemos a felicidade de encontra-lo na Cerimonia do Rio Tiete em 12-set-2013.


Nasmate por tudo!!!

------------------------------------
Masaru Emoto (江本勝, Emoto Masaru?) nasceu em Yokohama, Japão, no dia 22 de Julho de 1943 e é um fotógrafo e autor japonês que executou experiências com a água, submetendo-a ao pensamento humano, mas sem publicações científicas que comprovem suas experiências. Segundo ele, palavras ou pensamentos fazem com que as moléculas de água se comportem de formas diferentes. Essas proposições foram fortemente criticadas como pseudociência. Após submetê-las ao experimento, a determinada temperatura, são tiradas fotografias microscópicas das moléculas da água. Masaru Emoto tem um livro bastante conhecido sobre seus experimentos e ficou famoso ao tê-los divulgados no filme documentário "Quem somos nós". (http://pt.wikipedia.org/wiki/Masaru_Emoto)

----------------------------------------------


 
 

quinta-feira, 16 de outubro de 2014

passeio ambiental em Itu

No próximo dia 25 de outubro (sábado), das 9h às 11h, a Fundação SOS Mata Atlântica abre as porteiras do Centro de Experimentos Florestais SOS Mata Atlântica – Brasil Kirin, na cidade de Itu, no interior de São Paulo, para visitação. O programa Porteira Aberta é gratuito e tem como objetivo promover a interação dos visitantes com as atividades desenvolvidas pela equipe da ONG no local, que sedia pesquisas e projetos em prol da restauração e conscientização ambiental. -

See more at: http://www.sosma.org.br/eventos/porteira-aberta-e-opcao-de-passeio-ambiental-em-itu/#sthash.ebx7302Y.dpuf

terça-feira, 14 de outubro de 2014

Por que desmatar 79% da area de manaciais secou São Paulo - 10/10/2014

Artigo de Marcia Hirota*, originalmente publicado no Blog do Planeta – Estudo da Fundação SOS Mata Atlântica divulgado com exclusividade pela revista Época  constatou que a cobertura florestal nativa na bacia hidrográfica e nos mananciais que compõem o Sistema Cantareira, centro da crise no abastecimento de água que assola São Paulo, está pior do que se imaginava. Hoje, restam apenas 488 km2 (21,5%) de vegetação nativa na bacia hidrográfica e nos 2.270 km2 do conjunto de seis represas que formam o Sistema Cantareira.
O levantamento avaliou também os 5.082 km de rios que formam o sistema. Desse total, apenas 23,5% (1.196 km) contam com vegetação nativa em área superior a um hectare em seu entorno. Outros 76,5% (3.886 km) estão sem matas ciliares, em áreas alteradas, ocupadas por pastagens, agricultura e  silvicultura, entre outros usos.
O estudo teve como base o último Atlas dos Remanescentes Florestais da Mata Atlântica, que avaliou a situação da vegetação nos 17 Estados com ocorrência do bioma, no período 2012-2013. O Atlas, que monitora o bioma há 28 anos, é uma iniciativa da Fundação SOS Mata Atlântica e do Instituto Nacional de Pesquisas Espaciais (Inpe), com patrocínio de Bradesco Cartões e execução técnica da Arcplan.
Com base em imagens de satélite, o Atlas da Mata Atlântica utiliza a tecnologia de sensoriamento remoto e geoprocessamento para monitorar os remanescentes florestais acima de 3 hectares. Neste estudo sobre o Sistema Cantareira, realizado pela SOS Mata Atlântica e Arcplan, foram identificadas as áreas de até 1 hectare.
As análises foram avaliadas em nível municipal, indicando os municípios com total de áreas naturais mais preservados. As cidades observadas foram: Camanducaia (19,6% de vegetação nativa), Extrema (15,2%), Itapeva (7,9%) e Sapucaí Mirim (42%), em Minas Gerais; Bragança Paulista (3,2%), Caieiras (50,2%), Franco da Rocha (40,8%), Joanópolis (18,8%), Mairiporã (36,6%), Nazaré Paulista (24,7%), Piracaia (17,7%) e Vargem (17,9%), em São Paulo.
As florestas naturais protegem as nascentes e todo fluxo hídrico. Com esses índices de vegetação, não é de se estranhar que o Sistema Cantareira opere, atualmente, com o menor nível histórico de seus reservatórios, já que para ter água é preciso ter também florestas
E o que fazer diante deste quadro?
O primeiro desafio é proteger o que resta de Mata Atlântica e manter, com rigor, o monitoramento e a fiscalização dessas áreas para evitar a ocorrência de novos desmatamentos.
Importante lembrar que Minas Gerais, Estado que reúne não apenas as nascentes de rios que formam o Sistema Cantareira, mas também das bacias dos rios Doce, São Francisco e Paraíba do Sul, entre outros, é o recordista do desmatamento da Mata Atlântica pelo quinto ano consecutivo, de acordo com os últimos dados do Atlas da Mata Atlântica.
O segundo ponto é promover a recuperação florestal nessas regiões, incluindo-se aqui investimentos públicos e privados para restauração florestal e programas de Pagamentos Por Serviços Ambientais (PSA) voltados aos proprietários de terras, municípios e Unidades de Conservação que as preservarem.
Com o objetivo de estimular esse esforço, a Fundação SOS Mata Atlântica lançará ainda neste mês um novo edital do programa Clickarvore, com apoio do Bradesco Cartões e Bradesco Capitalização, para a doação de 1 milhão de mudas de espécies nativas para restauração na Bacia do Cantareira. Essas mudas possibilitarão a recuperação de até 400 hectares de áreas, que por sua vez podem promover a conservação de 4 milhões de litros de água por ano. A ideia é que os projetos selecionados colaborem para conservar e proteger os recursos hídricos conectando, nessas regiões, os poucos fragmentos de mata que hoje encontram-se isolados.
Pode parecer pouco, tendo em vista o tamanho do desafio, mas é um primeiro passo para trazer de volta as florestas e a água ao Sistema Cantareira. Esperamos que essa iniciativa contribua para o fortalecimento de políticas públicas efetivas e que possa marcar o início de esforços conjuntos da sociedade, iniciativa privada e do poder público para a recuperação desse importante manancial. Afinal, a grave escassez que enfrentamos neste ano reforça a necessidade do Estado promover a proteção dos mananciais e a gestão integrada e compartilhada da água.
A restauração da cobertura florestal nas áreas de mananciais é o pontapé para a recuperação das reservas de água. No entanto, para que traga resultados efetivos, essa iniciativa  precisa ser somada a uma ação urgente e firme do Governo do Estado no sentido de implementar efetivamente instrumentos econômicos como o PSA e a cobrança pelo uso da água a todos os usuários, o que garantirá a sustentabilidade do sistema e o acesso à agua em quantidade e qualidade para a sociedade.

*Marcia Hirota é diretora-executiva da Fundação SOS Mata Atlântica.
- See more at: http://www.sosma.org.br/101149/por-que-desmatar-79-da-area-de-mananciais-secou-sao-paulo/#sthash.GM7rJDDk.dpuf

sexta-feira, 23 de maio de 2014

Living Enterprise as the Foundation of a Generative Economy

Very interesting !!!!

source: http://blogs.worldwatch.org/sustainabilitypossible/livingenterprise/

“What kind of economy is consistent with living inside a living being?” This was a question posed to us under a leafy canopy, deep in the woods of southern England, not far from Schumacher College where I’d come as a teacher. I stood listening with a group of students as resident ecologist Stephan Harding posed what for me would become a pivotal question – the only question there is, really, as we negotiate the turn from the industrial age into an entirely new age of civilization.

I’d come to Schumacher to share my learnings from four years as co-founder of Corporation 20/20 at Tellus Institute in Boston, where I’d helped to lead hundreds of experts in business, law, government, labor, and civil society to explore what, at the time, seemed to me the most critical question of our day: How could corporations be redesigned to incorporate social and ecological aims as deeply as financial aims?

Over 20 years as co-founder and publisher of Business Ethics magazine, I had seen how corporations and financial markets had come to be the dominant institutions of society, and how their profit-maximizing operating system had become the operating system of the planet. That design lay at the root of many major ills facing our society. But if corporate design was the core problem, the question of redesigning corporations did not quite hit the mark as the solution. It was Stephan’s talk that helped me understand why.

You don’t start with the corporation and ask how to redesign it. You start with life, with human life and the life of the planet, and ask, how do we generate the conditions for life’s flourishing?

f you stand inside a large corporation and ask how to make our economy more sustainable, the answers are about incremental change from the existing model. The only way to start that conversation is to fit your concerns inside the frame of profit maximization. (“Here’s how you can make more money through sustainability practices.”) Asking corporations to change their fundamental frame is like asking a bear to change its DNA and become a swan.

The founding generation of America didn’t begin by telling the king how caring for the peasants would improve his return on investment. They articulated truths they held to be self-evident. That’s what Stephan did in that forest. He said simply:

“A thing is right when it enhances the stability and beauty of the total ecosystem. It is wrong when it damages it.”

The sustainability of the larger system comes first. Everything else has to fit itself within that frame.

From maximizing profits to sustaining life

If the dominant ownership designs of today are built around profit maximization, central to that imperative is the need to grow. As Herman Daly and others have so eloquently articulated, the growth imperative threatens the living system of the Earth. When we take apart the system to see where this imperative resides, we find that what keeps it in overdrive are the demands of Wall Street for ever-higher profits and stock price. Corporations, and the capital markets where their ownership shares trade, are the internal combustion engine of the capitalist economy. They are where it hits the ground and goes. And where it spins out of control. As Fritjof Capra put it, “It’s an alarming thought that organizational systems are now the main driving force of ecological systems.”

In the short run, profit-maximizing companies can help in a rapid transition to an ecologically cleaner economy. But in the somewhat longer run, that transition might represent a brief moment in time. If human civilization and planetary ecosystems are still functioning well 50 years from now (not a small if), what about the next 50 years? And the next 100 or 200 or 1,000 years beyond that? What kind of economy will be suited for ongoing life inside the living earth? Will it be an economy dominated by massive corporations intent solely on earnings growth? That doesn’t seem likely. When you take the long view, the question turns itself about:

Can we sustain a low-growth or no-growth economy indefinitely without changing dominant ownership designs?

That seems unlikely. Probably impossible. How, then, do we make the turn? How can we design economic architectures that are self-organized not around profit maximization, but around serving the needs of life?

After my sojourn in England, this question set me on a journey in search of answers. I had seen, over many years, how extractive design – the quest for endless extraction of more and more financial wealth – was at the root of many of our ills. I began a quest to find alternative designs. And I was heartened to find they were everywhere, emerging in largely unsung, disconnected experiments all over the world.

I visited wind farms in Denmark that had been started and owned by wind guilds, groups of small investors who joined together to fund and own wind installations, with no corporate middleman. Denmark now generates one-fifth of its electric power from wind, more than any other nation. And this success is widely credited to the grassroots movement of the wind guilds. It’s an ecological success story made possible by the community-rooted ownership designs behind it.

I studied the community forests of Mexico, where the rights to govern and profit from the forest have often been granted to local communities, many of them indigenous tribal peoples – like the Zapotec Indians of Ixtlan de Juarez in southern Mexico. At Ixtlan, the problems that bedeviled other forests in Mexico, like deforestation and illegal logging, have become relatively unknown. The reason is community members have incentive to be stewards, because forest enterprises employ 300 people harvesting timber, making furniture, and caring for the forest. These are living forests, communities of trees and humans, where the purpose is to live well together. Worldwide, more than a quarter of forests in developing nations are managed by local communities. In Mexico, community forests represent more than 60 percent of all forests. Yet they remain virtually unknown, even in Mexico.
On Martha’s Vineyard, off the coast of Massachusetts, I visited South Mountain Company, an employee-owned design and build firm specializing in sustainable construction, which has made a deliberate choice to slow down its growth. It was the first example I’d seen of a consciously post-growth company. As its president John Abrams had written, this company was “challenging the false gospel of unchecked growth.” After the crash of 2008, it had in fact opted to shrink – and to do so in the most humane way possible. Its ability to make that choice arose directly from the fact that the company was owned and controlled not by absentee owners, but by its own employees.

In Maine, I visited a lobster cooperative that supported more than 40 families, helping them by allowing lobstermen to collectively buy bait and sell their catch efficiently. It is a small-scale community ownership design that is part of a larger economic design – a state governing framework. That framework includes democratically elected lobster zone councils, as well as ecological rules prohibiting the taking of lobsters that are under-age, or carrying eggs. Most innovatively, the state rules prohibit corporate boats from operating in sensitive inshore waters, allowing only owner-operated boats there. In other words, only small, local, mom-and-pop type lobster operations are allowed to work the best waters. At a time when the vast majority of the world’s fish stocks are overexploited, the Maine lobster industry remains vibrant. It is often cited as an example of successful collective action in “common pool resource management.” Rules on ownership design are central to it all.
n Denmark, I visited the town of Kalundborg, where the major pharmaceutical Novo Nordisk produces 40 percent of the world’s insulin. The town is home to a famed example of “industrial symbiosis,” where this company’s waste becomes food for the ecosystem. Yeast from making insulin, for example, is treated and then passed to farmers to be used as food for pigs, or for fertilizer. That ecological design – which has been operating and stable for decades – is possible only because ownership of this major, publicly traded company is also stable. It is an example of a design that is common throughout northern Europe, which can be called the “mission-controlled corporation.” The aim of this company is to defeat diabetes. And the corporation is legally controlled by a foundation, intent on that social mission.

These various models embody a coherent school of design – a common form of organization that brings the living concerns of the human and ecological communities into the world of property rights and economic power. They can be called a family of generative ownership designs. They are aimed at creating the conditions where all life can thrive. Together, they potentially form the foundation for a generative economy – a living economy that might have a built-in tendency to be socially fair and ecologically sustainable.

In ownership design, there are five essential patterns that work together to create either extractive or generative design: purpose, membership, governance, capital, and networks. Extractive ownership has a Financial Purpose: maximizing profits. Generative ownership has a Living Purpose: creating the conditions for life. While corporations today have Absentee Membership, with owners disconnected from the life of enterprise, generative ownership has Rooted Membership, with ownership held in human hands. While extractive ownership involves Governance by Markets, with control by capital markets on autopilot, generative designs have Mission-Controlled Governance, with control by those focused on social mission. While extractive investments involve Casino Finance, alternative approaches involve Stakeholder Finance, where capital becomes a friend rather than a master. Instead of Commodity Networks, where goods are traded based solely on price, generative economic relations are supported by Ethical Networks, which offer collective support for social and ecological norms.

Ownership is the gravitational field that holds an economy in its orbit. Today, dominant ownership designs lock us into behaviors that lead to financial excess and ecological overshoot. But emerging, alternative ownership patterns – when properly designed – can have a tendency to lead to beneficial outcomes. It may be that these designs are the elements needed to form the foundation for a generative economy, a living economy – an economy that might at last be consistent with living inside a living being.

——-
Marjorie Kelly is a Fellow at Tellus Institute in Boston and author of The Divine Right of Capital and the more recent Owning Our Future: The Emerging Ownership Revolution. Learn more at www.OwningOurFuture.com. This blog post was originally posted on the Sustainable Prosperity blog in December 2012.


sexta-feira, 16 de maio de 2014

Do Plants Think?

Scientist Daniel Chamovitz unveils the surprising world of plants that see, feel, smell—and remember

By Gareth Cook

What a Plant Knows, Daniel Chamowitz, FSG Books - Daniel Chamowitz

How aware are plants? This is the central question behind a fascinating new book, “What a Plant Knows,” by Daniel Chamovitz, director of the Manna Center for Plant Biosciences at Tel Aviv University. A plant, he argues, can see, smell and feel. It can mount a defense when under siege, and warn its neighbors of trouble on the way. A plant can even be said to have a memory. But does this mean that plants think — or that one can speak of a “neuroscience” of the flower? Chamovitz answered questions from Mind Matters editor Gareth Cook.

1. How did you first get interested in this topic?
My interest in the parallels between plant and human senses got their start when I was a young postdoctoral fellow in the laboratory of Xing-Wang Deng at Yale University in the mid 1990s. I was interested in studying a biological process that would be specific to plants, and would not be connected to human biology (probably as a response to the six other “doctors” in my family, all of whom are physicians). So I was drawn to the question of how plants sense light to regulate their development.

It had been known for decades that plants use light not only for photosynthesis, but also as a signal that changes the way plants grow. In my research I discovered a unique group of genes necessary for a plant to determine if it’s in the light or in the dark. When we reported our findings, it appeared these genes were unique to the plant kingdom, which fit well with my desire to avoid any thing touching on human biology. But much to my surprise and against all of my plans, I later discovered that this same group of genes is also part of the human DNA.

This led to the obvious question as to what these seemingly “plant-specific” genes do in people.  Many years later, we now know that these same genes are important in animals for the timing of cell division, the axonal growth of neurons, and the proper functioning of the immune system.

But most amazingly, these genes also regulate responses to light in animals! While we don’t change our form in response to light as plants do, we are affected by lab at the level of our internal clock. Our internal circadian clocks keep us on a 24 hour rhythm, which is why when we travel half way around the world we experience jet lag. But this clock can be reset by light. A few years ago I showed, in collaboration with Justin Blau at NYU, that mutant fruit flies that were missing some of these genes lost the ability to respond to light. In other words, if we changed their clocks, they remained in jetlag.

This led me to realize that the genetic difference between plants and animals is not as significant as I had once naively believed. So while not actively researching this field, I began to question the parallels between plant and human biology even as my own research evolved from studying plant responses to light to leukemia in fruit flies.

2. How do think people should change how they think about plants?
People have to realize that plants are complex organisms that live rich, sensual lives. You know many of us relate to plants as inanimate objects, not much different from stones. Even the fact that many people substitute silk flowers for real ones, or artificial Christmas trees for a live one, is exemplary at some level of how we relate to plants. You know, I don’t know anyone who keeps a stuffed dog in place of a real one!

But if we realize that all of plant biology arises from the evolutionary constriction of the “rootedness” that keep plants immobile, then we can start to appreciate the very sophisticated biology going on in leaves and flowers. If you think about it, rootedness is a huge evolutionary constraint. It means that plants can’t escape a bad environment, can’t migrate in the search of food or a mate. So plants had to develop incredibly sensitive and complex sensory mechanisms that would let them survive in ever changing environments. I mean if you’re hungry or thirsty, you can walk to the nearest watering hole (or bar). If you’re hot, you can move north, if you’re looking for a mate, you can go out to a party. But plants are immobile. They need to see where their food is. They need to feel the weather, and they need to smell danger. And then they need to be able to integrate all of this very dynamic and changing information. Just because we don’t see plants moving doesn’t mean that there’s not a very rich and dynamic world going on inside the plant.

3. You say that plants have a sense of smell?
Sure. But to answer this we have to define for ourselves what “smell” is. When we smell something, we sense a volatile chemical that’s dissolved in the air, and then react in someway to this smell. The clearest example in plants is what happens during fruit ripening. You may have heard that if you put a ripe and an unripe fruit together in the same bag, the unripe one will ripen faster. This happens because the ripe one releases a ripening pheromone into the air, and the green fruit smells it and then starts ripening itself. This happens not only in our kitchens, but also, or even primarily, in nature. When one fruit starts to ripen, it releases this hormone which is called ethylene, which is sensed by neighboring fruits, until entire trees and groves ripen more or less in synchrony.

Another example of a plant using smell is how a parasitic plant called dodder finds its food. Dodder can’t do photosynthesis, and so has to live off of other plants. The way it finds its host plant is by smelling. A dodder can detect minute amounts of chemicals released in the air by neighboring plants, and will actually pick the one that it finds tastiest! In one classic experiment scientists showed that dodder prefers tomato to wheat because it prefers the smell.

3a. How about hearing?
This is a bit trickier because while loads of research support the idea that plants see, smell, taste and feel, support for plant auditory prowess is indirectly proportional to the amount of anecdotal information we have about the ways in which music may influence how a plant grows. Many of us have heard stories about plants flourishing in rooms with classical music. Typically, though, much of the research on music and plants was, to put it mildly, not carried out by investigators grounded in the scientific method. Not surprisingly, in most of these studies, the plants thrived in music that the experimenter also preferred.

From an evolutionary perspective, it also could be that plants haven’t really needed to hear. The evolutionary advantage created from hearing in humans and other animals serves as one way our bodies warn us of potentially dangerous situations. Our early human ancestors could hear a dangerous predator stalking them through the forest, while today we hear the motor of an approaching car. Hearing also enables rapid communication between individuals and between animals. Elephants can find each other across vast distances by vocalizing subsonic waves that rumble around objects and travel for miles. A dolphin pod can find a dolphin pup lost in the ocean through its distress chirps. What’s common in all of these situations is that sound enables a rapid communication of information and a response, which is often movement—fleeing from a fire, escaping from attack, finding family.

But plants are rooted, sessile organisms. While they can grow toward the sun, and bend with gravity, they can’t flee. They can’t escape. They don’t migrate with the seasons. As such, perhaps the audible signals we’re used to in our world are irrelevant for a plant.

All that being said, I have to cover myself hear by pointing out that some very recent research hints that plants may respond to sounds. Not to music mind you, which is irrelevant for a plant, but to certain vibrations. It will be very interesting to see how this pans out.

4. Do plants communicate with each other?
At a basic level, yes.  But I guess it centers around how you define communication. There is no doubt that plants respond to cues from other plants. For example, if a maple tree is attacked by bugs, it releases a pheromone into the air that is picked up by the neighboring trees. This induces the receiving trees to start making chemicals that will help it fight off the impending bug attack. So on the face of it, this is definitely communication.

But I think we also have to ask the question of intent (if we can even use that word when describing plants, but humor me while I anthropomorphize). Are the trees communicating, meaning is that attacked tree warning its surrounding ones? Or could it be more subtle? Maybe it makes more sense that the attacked branch is communicating to the other branches of the same tree in an effort for self survival, while the neighboring trees, well they’re just eavesdropping and benefiting from the signal.

There are also other examples of this type of communication. For example a very recent study showed that plants also communicate through signals passed from root to root. In this case the “talking” plant had been stressed by drought, and it “told” its neighboring plants to prepare for a lack of water. We know the signal went through the roots because this never happened if the two plants were simply in neighboring pots. They had to have neighboring roots.

5. Do plants have a memory?
Plants definitely have several different forms of memory, just like people do. They have short term memory, immune memory and even transgenerational memory! I know this is a hard concept to grasp for some people, but if memory entails forming the memory (encoding information), retaining the memory (storing information), and recalling the memory (retrieving information), then plants definitely remember. For example a Venus Fly Trap needs to have two of the hairs on its leaves touched by a bug in order to shut, so it remembers that the first one has been touched. But this only lasts about 20 seconds, and then it forgets. Wheat seedlings remember that they’ve gone through winter before they start to flower and make seeds. And some stressed plants give rise to progeny that are more resistant to the same stress, a type of transgenerational memory that’s also been recently shown also in animals. While the short term memory in the venus fly trap is electricity-based, much like neural activity, the longer term memories are based in epigenetics — changes in gene activity that don’t require alterations in the DNA code, as mutations do, which are still passed down from parent to offspring.

6. Would you say, then, that plants “think”?
No I wouldn’t, but maybe that’s where I’m still limited in my own thinking! To me thinking and information processing are two different constructs. I have to be careful here since this is really bordering on the philosophical, but I think purposeful thinking necessitates a highly developed brain and autonoetic, or at least noetic, consciousness. Plants exhibit elements of anoetic consciousness which doesn’t include, in my understanding, the ability to think.  Just as a plant can’t suffer subjective pain in the absence of a brain, I also don’t think that it thinks.

7. Do you see any analogy between what plants do and what the human brain does? Can there be a neuroscience of plants, minus the neurons?
First off, and at the risk of offending some of my closest friends, I think the term plant neurobiology is as ridiculous as say, human floral biology. Plants do not have neuron just as humans don’t have flowers!

But you don’t need neurons in order to have cell to cell communication and information storage and processing.  Even in animals, not all information is processed or stored only in the brain. The brain is dominant in higher-order processing in more complex animals, but not in simple ones.  Different parts of the plant communicate with each other, exchanging information on cellular, physiological and environmental states. For example root growth is dependent on a hormonal signal that’s generated in the tips of shoots and transported to the growing roots, while shoot development is partially dependent on a signal that’s generated in the roots. Leaves send signals to the tip of the shoot telling them to start making flowers.  In this way, if you really want to do some major hand waving, the entire plant is analogous to the brain.

But while plants don’t have neurons, plants both produce and are affected by neuroactive chemicals! For example, the glutamate receptor is a neuroreceptor in the human brain necessary for memory formation and learning. While plants don’t have neurons, they do have glutamate receptors and what’s fascinating is that the same drugs that inhibit the human glutamate receptor also affect plants. From studying these proteins in plants, scientists have learned how glutamate receptors mediate communication from cell to cell. So maybe the question should be posed to a neurobiologist if there could be a botany of humans, minus the flowers!

Darwin, one of the great plant researchers, proposed what has become known as the “root-brain” hypothesis. Darwin proposed that the tip of the root, the part that we call the meristem, acts like the brain does in lower animals, receiving sensory input and directing movement. Several modern-day research groups are following up on this line of research.

Article Source: Scientific American: Do Plants Think?

quinta-feira, 15 de maio de 2014

Estradas que geram energia? Conheça o projeto Solar Roadways

por Vanessa Barbosa - Exame.com - 15/05/2014


Anos atrás, quando a expressão "aquecimento global" começou a ganhar popularidade, o casal de americanos Julie e Scott Brusaw teve a ideia de substituir o asfalto e superfícies de concreto por painéis fotovoltaicos para gerar energia solar no próprio meio urbano.

Nascia assim o projeto Solar Roadways, painéis rodoviários solares que podem ser instalados em estradas, estacionamentos, calçadas, ciclovias, parques infantis ou em qualquer superfície onde incida sol.

A fim de chegar às vias comerciais, o projeto busca apoio no site de financiamento coletivo Indiegogo para angariar US$ 1 milhão até o final do mês.

http://www.youtube.com/watch?v=SNMFKKyFU60

O casal afirma que, se todas as rodovias dos EUA fossem cobertas por esses paineis, seria possível gerar três vezes mais energia do que o país consome hoje. Em 2009, a dupla assinou um contrato com a Administração Rodoviária Federal dos EUA para construir o primeiro protótipo, que deu origem a um estacionamento solar, forte o suficiente para aguentar veículos pesados.

Para provar, o casal resolveu passar com um trator por cima, como mostra o vídeo:
http://www.youtube.com/watch?v=iKO-sDdJzTw

Segundo a descrição do projeto, a estrutura serve a outros propósitos além de gerar energia solar.

Em dias de neve, é capaz de aquecer para evitar o acúmulo de gelo, tem ainda LEDs para criar linhas e sinalização rodoviária, e um corredor adjunto para armazenar e tratar águas pluviais

quarta-feira, 14 de maio de 2014

Plants Exhibit The Same Senses As Humans And See, Touch, Smell, Hear and Even Taste

By: Daniel Chamovitz, Director of the Manna Center for Plant Biosciences at Tel Aviv University In Israel, Guest Contributor

Have you ever wondered what the grass under your feet feels, what an apple tree smells, or a marigold sees? Plants stimulate our senses constantly, but most of us never consider them as sensory beings too. In fact senses are extremely important to plants. Whatever life throws at them, they remain rooted to the spot – they cannot migrate in search of food, escape a swarm of locusts or find shelter from a storm. To grow and survive in unpredictable conditions, plants need to sense their environment and react accordingly. Some people may not be comfortable describing what plants do as seeing, hearing, smelling, tasting and touching. They certainly lack noses, eyes, ears, mouths and skin, but in what follows, I hope to convince you that the sensory world of plants is not so very different from our own. 

Plants have scientifically been show to draw alternative sources of energy from other plants. Plants influence each other in many ways and they communicate through “nanomechanical oscillations” vibrations on the tiniest atomic or molecular scale or as close as you can get to telepathic communication. However, their sense and communication are measurable in very much the ways as are humans.

SIGHT
What do plants see? The obvious answer is that, like us, they see light. Just as we have photoreceptors in our eyes, they have their own throughout their stems and leaves. These allow them to differentiate between red and blue, and even see wavelengths that we cannot, in the far red and ultraviolet parts of the spectrum. Plants also see the direction light is coming from, can tell whether it is intense or dim and can judge how long ago the lights were turned off.

Studies have shown that plants bend to the light as if hungry for the sun’s rays, which is exactly what they are. Photosynthesis uses light energy to turn carbon dioxide and water into sugar, so plants need to detect light sources to get food.

We now know they do this using phototropins – light receptors in the membranes of cells in the plant’s tip. Phototropins are sensitive to blue light. When they sense it, they initiate a cascade of signals that ends up modulating the activity of the hormone auxin. This causes cells on the shaded side of the stem to elongate, bending the plant towards the light.

Plants see red light using receptors in their leaves called phytochromes. A phytochrome is a sort of light-activated switch: when irradiated with red light, it changes its conformation so that it is primed to detect far-red light, and when irradiated by far red it changes back to the form that is sensitive to red light. This has two key functions. It allows plants to “turn off” at the end of the day – because far-red light predominates at sunset – and wake up again next day when the sun is high enough in the sky for red light to switch their phytochromes back on. It also allows them to sense when they are in the shade. Chlorophyll, the main pigment for photosynthesis, absorbs red but not far-red light, so when a plant is being crowded out by other plants it will see more far-red light than when it is growing in full sunshine. This directly influences the level of activated phytochromes, causing the plant to grow rapidly to get better exposure to the sun.

Phototropins and phytochromes are completely different from the photoreceptors found in animals’ eyes, although all consist of a protein connected to a chemical dye that absorbs the light. There is one type of photoreceptor, however, that we share. During daylight hours, cryptochromes within cells detect blue and UV light, using this signal to set an organism’s internal clock or circadian rhythms. In plants, this clock regulates many processes, including leaf movements and photosynthesis. So sight even helps plants tell the time.

TOUCH
Plants live in a very tactile world. Branches sway in the wind, insects crawl across leaves, and vines search out supports to hang on to. Plants are even sensitive to hot and cold, allowing them to respond to the weather by doing things like changing their growth rates and modulating their use of water. Simply touching or shaking a plant is often enough to reduce its growth, which is why vegetation in windswept locations tends to be stunted.

All plants can sense mechanical forces to some degree, but tactile sensitivity is most obvious in the carnivorous Venus flytrap. When a fly, beetle or even a small frog crawls across its specially adapted leaves, these spring together with surprising force, sandwiching the unsuspecting prey and blocking its escape. The Venus flytrap (pictured) knows when to shut because it feels its prey touching large hairs on the two lobes of the trap. But it won’t just snap shut with any stimulation – at least two hair touches must occur within about 20 seconds of each other. This helps to ensure that the prey is the ideal size and will not be able to wiggle out of the trap once it closes.

The mechanism by which the Venus flytrap feels its prey is uncannily similar to the way you feel a fly crawling on your arm. Touch receptors in your skin sense the insect and activate an electrical current that passes along nerves until it reaches your brain, which registers the fly’s presence and instigates a response. Likewise, when a fly rubs up against the Venus flytrap’s hairs, it induces a current that radiates throughout the leaves. This activates ion channels in the cell membrane and the trap springs shut, all in less than one-tenth of a second.

Although most plants do not react this fast, they feel a mechanical stimulus in the same way. What’s really fascinating is that even at the level of individual cells, plants and animals use similar proteins to feel things. These mechanoreceptors are embedded in the cell membranes and, when stimulated by mechanical pressure or distortion, they allow charged ions to cross the membrane. This creates a difference in electrical charge between the inside and the outside of the cell, which generates a current. Unlike us, plants lack a brain to translate these signals into sensations with emotional connotations. Nevertheless, their sensitivity to touch allows them to respond to their changing environments in specific and appropriate ways.

SMELL
The parasitic vine called dodder is the sniffer dog of the vegetable world. It contains almost no chlorophyll – the pigment that most plants use to make food – so to eat it must suck the sugary sap from other plants. Dodder uses olfaction to hunt down its quarry. It can distinguish potential victims from their smell, homing in on its favourites and also using scents emitted by unhealthy specimens to avoid them (Science, vol 313, p 1964).

Dodder is exceptionally sensitive to odours, but all plants have a sense of smell. In animals, sensors in the nose recognise and bind with molecules in the air. Plants also have receptors that respond to volatile chemicals. What do they smell?

Back in the 1920s, researchers with the US Department of Agriculture demonstrated that treating unripe fruit with ethylene gas would induce it to ripen. Since then, it has become apparent that all ripening fruits emit ethylene in copious amounts, can smell it, and respond by ripening. This ensures not only that a fruit ripens uniformly but also that neighbouring ones ripen together, producing more ethylene and leading to a ripening cascade. Coordinated ripening is important because it attracts animals to eat the fruit and disperse the seeds. Ethylene is a plant hormone that regulates many processes, so being able to smell it has other advantages too, such as in the coordination of leaf-colour changes in the autumn.

Above all, however, smell allows plants to communicate. Research in the 1980s showed that healthy trees in the vicinity of caterpillar-infested ones were resistant to the pests because their leaves contained chemicals that made them unpalatable. Other trees isolated from the infestation did not produce these chemicals, so it seemed that the attacked trees had sent an airborne pheromonal message that primed healthy trees to prepare for imminent attack. We now know that many volatile chemicals are involved.

TASTE
Our senses of smell and taste are intimately entwined. Conceptually, smells enhance or dampen tastes sensed by our tongues. Physically, our mouths and nasal cavities are connected so that our noses can pick up smells released as food is chewed. The major difference is that smell deals with volatile chemicals and taste senses soluble chemicals.

The two senses are also connected in plants. This is best seen in their responses to attacks by insects or pathogenic bacteria. As we have already seen, plants under attack emit a variety of volatile chemicals to warn their neighbours, but one called methyl jasmonate is particularly important. This is where taste comes in. Although methyl jasmonate is a gas and so an effective airborne messenger molecule, it is not very active in plants. Instead, when it diffuses in through the stomata – the pores in the surface of the leaf – it gets converted into the water-soluble jasmonic acid. This attaches to a specific receptor in the cells and triggers the leaf’s defence responses. Just as our tongues contain receptors for different taste molecules in food, plants contain receptors for different soluble molecules, including jasmonic acid.

As taste involves soluble chemicals, it is perhaps not surprising that much of a plant’s sense of taste is in its roots, surrounded as they are by soil and water. A classic experiment reveals that plants can use underground chemical messages to recognise their relatives nearby (New Scientist, 26 March 2011, p46). There is also root-to-root communication between unrelated neighbours. When a row of plants was subjected to drought conditions, it took just one hour for the message to travel to plants that were five rows away, causing them to close their stomata in preparation for a lack of water (PLoS One, vol6, pe23625). Other plants that were just as close but not connected by their roots failed to react. So the signal must have been passed from root to root, probably taking the form of a soluble molecule.

HEARING
You have probably heard conflicting stories about the musical preferences of plants. Some people are convinced they flourish when exposed to classical compositions, others believe that heavy metal or bebop does the trick. Strangely, plants’ musical tastes show a remarkable congruence with those of the humans reporting them. Although research in this area has a long history, most of it is not very scientific and, if you think about it, experiments studying music and plants were doomed from the start. We don’t judge a plant’s vision by showing it an eye chart and asking it to read the bottom line. Olfaction is not measured by its ability to differentiate between Chanel No.5 and Old Spice.

Music is not ecologically relevant for plants, so we shouldn’t expect them to be tuned in to it. But there are sounds that, at least theoretically, it could be advantageous for them to hear. These include the vibrations produced by insects, such as a bee’s buzz or an aphid’s wing beat, and minuscule sounds that might be created by even smaller organisms. Plants might even benefit from the ability to detect certain sounds produced by other plants. For example, researchers at the Institute of Plant Sciences in Bern, Switzerland, recently recorded ultrasonic vibrations emanating from pine and oak trees during a drought (New Phytologist, vol179, p1070), perhaps signalling to other trees to prepare for dry conditions.

Stefano Mancuso from the International Laboratory of Plant Neurobiology at the University of Florence, Italy, and his colleagues are starting to apply rigorous standards to study plant hearing (Trends in Plant Sciences, vol17, p323). Their preliminary results indicate that corn roots grow towards specific frequencies of vibrations. What is even more surprising is their finding that roots themselves may also be emitting sound waves. For now, though, we have no idea how a plant might produce sound signals let alone how they might detect them.

If this research pans out, then we will know that plants have the same five senses as animals. Either way, there can be no doubt that plants are sensually aware organisms in their own right.

ABOUT THE AUTHOR:
Daniel Chamovitz is director of the Manna Center for Plant Biosciences at Tel Aviv University, Israel.

Source: http://themindunleashed.org/2013/11/plants-exhibit-same-senses-as-humans.html
wakingtimes.com

LinkWithin

Related Posts Plugin for WordPress, Blogger...